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A little understanding goes a long way...

de the 
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“In terms of the significance which is disclosed in 
understanding the world, concernful Being-alongsi
ready-to-hand gives itself to understand whatever 
that which is encountered can have." 

Martin Heidegger, Being and Time



I want to address “technology thrusts” for V&V:

’t confuse 

 software 
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Software quality assurance

Software engineering techniques

Sensitivity analysis

Uncertainty analysis

Where are we going?

There are two assumptions  that underlie this talk:

- The goal is to provide information, not codes (don
means with ends!)

- The focus of our code development is engineered
product rather than science



ASCI program managers are not the only ones that say 
e.

e as they 
nd 
ions will 

“Computers vs 
 

ressure on 

uld do the 
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controversial things about computational scienc

“If the capabilities of computers continue to increas
have in the past, the relative roles of experiment a
computation in providing aerodynamic flow simulat
undergo profound changes.”

D. R. Chapman, H. Mark, and M. W. Pirtle (1975), 
Wind Tunnels for Aerodynamic Flow Simulations,”
Astronautics and Aeronautics, April, 22-35.

They stressed that economics was a major component in p
wind tunnel facilities. (Does this sound familiar?)

The authors quantitatively estimated that ~ 400 GFlops wo
trick. Duh...



So exactly what is Verification  and Validation ?

y”?

tion”.
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Physics code development:

Verification: “Are we solving the equations correctl

Validation: “Are we solving the correct equations”?

V&V must be coupled with code “accreditation” or “certifica



The world is moving toward increased formal validation 
tion. Here 
:

 this date
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content in computational science and its applica
are some, but not all, benchmarks (Oberkampf)

Society for Computer Modeling (1979)

IEEE (1984)

ASME (beginning 1986 and still evolving 1993)

American Nuclear Society (1987)

Military Operations Research Society (?)

Defense Modeling and Simulation Organization (1994)

AIAA (1994, 1998)

DOE DP [ASCI] (1998) ; other formal SQA activities prior to

ISO standards (?)



There is a lot of information out there.

 and 
, Hermosa, 1998

o, 
logy , IEEE 

eral hundred

 Site
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Pat Roache has written the book: P. J. Roache Verification
Validation in Computational Science and Engineering  

Another interesting book is: P. L. Knepell and D. C. Arangn
Simulation Validation - A Confidence Assessment Methodo
Computer Society, 1993

Here is a smattering of bibliographies:

W. O. Oberkampf (1998), SAND98-2041, several hundred

O. Balci and R. G. Sargent (1984), Simuletter, Vol. 15, No. 3, sev

O. Balci, date unknown, bibliography available at the DMSO Web

D. S. (Steve) Stevenson (1998), unpublished, ~ 150 references

T. G. Trucano (1998), unpublished, ~ 200 references



What are key characteristics of “multiphysics” codes?

ent in correct 

esent

 physics code

luding special 
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Multiphysics  often implies general purpose

General purpose  implies that users  are a huge compon
application of the code

Multiphysics  also often implies research models  are pr

CTH:
3-D multimaterial Eulerian shock wave physics code

Fortran (500,000 lines) + MPI + bits of C, etc.

Hundreds of users (around the country)

ALEGRA :
3-D multimaterial Arbitrary Lagrangian Eulerian MHD shock wave

C++ (150000 lines) + MPI + C + Fortran, etc. (1,000,000 total inc
libraries)

Under development



ALEGRA is a multiphysics code:

UM HEDP2D

&V

onf

V&V

Conf

-D, MP Rad-MHD 
ode [Sandia Z-
inch Program]

 + other CS input

NMSU, Clemson, 
inty Quantification 
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Basic General HAMMER EMMA HYR

ALEGRA

V&V

Conf

V&V

Conf

V&V

Conf

V&V

Conf

V

C

Adaptive grid, 3-D, MP strong shock wave 
physics code. [NG Standoff, safety]

Electromechanics 
(ferroelectrics) code 
[NG power suppy 
analysis and design]

3
c
P

Code project V&V

ASCI APPS supported V&V

DP-50 V&V

ASCI PSE V&V

Collaborations: 
Sandia Uncerta
group



Software quality - is this an oxymoron?

g software 

 up...”,  ASCI 

d with ASCI”,  
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How much do you believe my premise that we are deliverin
product?

“...I’m here to make sure that they [V&V Program] don’t screw us
code development program person...

SQA with ASCI code development - one view:

Good application of the principles to begin with

Lax review approach during the software life cycle

No metrics of the software life cycle process

“Our guidance is that we expect a formal SQA program to be use
DOE-AL person



The Capability Maturity Model has the highest level of 

Gain
process
control

 Process
reas
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associated interest.

Initial
(1)

Repeatable
(2)

Defined
(3)

Managed
(4)

Optimizing
(5)

Ad hoc and
chaotic

Gain basic
management
control

Complete
process
definition

Master
process
measurement

18 Key
A



Delivering computational science as product requires 

pplicable to 

icacy of the 
 (1997), “1001 
preprint.

an write any 
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software engineering.

What software engineering principles and techniques are a
large systems of floating point scientific code?

“...the author cannot find any long term empirical study on the eff
various software engineering techniques...”,  D. E. Stevenson
Reasons for not Proving Programs Correct: A Survey,” Clemson 

Many recommendations are called but less are chosen:

Configuration management systems and rules **

Program development environments (is the ideal to have no hum
code, but only specs, equations, etc?) *

Coding standards*

Formal software inspections*

Mandatory regression testing **

???

** - ALEGRA doing it; * - ALEGRA doing it half-baked



If only it were true that ...

-being.",  Jean-
 we did found a bug 

.

orrect.”
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"Thus a new component of the real has just appeared to us - non
Paul Sartre, Being and Nothingness  (The last code inspection
that passed every benchmark test we had.)

Verification fits this model relatively well, except..

this still doesn’t “prove” that the code implementation is “c



The “God” of testing:

n Computer Press, 

ovel ):

ar

ation

ph structure 
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B. Beizer, Software Testing Techniques , International Thomso
1990

At the end of all of this you still don’t have a novel.

For example ( software ):

• Flowgraphs and path 
testing

• Transaction-flow testing

• Data-flow testing

• Domain testing 

• Syntax testing

• Logic-based testing

• Transition testing

For example ( n

• Spelling

• Gramm

• Punctu

• Paragra

• Syntax

• Logic



Verification for a multi-physics code is more than code 
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testing: the meta-issues are what kill you!

What tests?

How many of them? 

What is the benefit?

What is the cost?

What are they telling you?

What are they not telling you?

What are the metrics?



But you’d better worry about testing a lot! - “The T 

re,” 
38

 saying is 

n be 
n’t!!! ), Hatton 
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Experiments”

L. Hatton (1997), “The T Experiments: Errors in Scientific Softwa
Computational Science and Engineering, Vol. 4, No. 2, 1997, 27-

“The results were horrifying.”  - Roache

Here are the lessons to me:

• Well designed static testing is critical.

• You need tools  to do this.

• You need metrics  to do this.

• The proper language to understand what Hatton is
reliability , not physics.

• For those who must believe that code validation ca
accomplished through code comparisons ( I do
really illustrates how to do a code comparison.



Dynamic Testing 101 - Does everybody know what 

ctness. It is 
ification 

e functioning 

 time fixing 
reep in even 

ite.
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regression testing is?

Regression testing tests implementation stability, not corre
strictly speaking a software engineering practice, not a ver
activity per se.

We do it and it leads to much interesting insight.

The regression test set covers less than 50% of th
software (hmmm).

The appropriate metric is that we spend much less
bad checkins than we did before it - but they still c
in parts of the code covered by the test suite.

Serves as the kernel for a larger verification test su



Dynamic Testing 201 - Component testing and coverage.

 for 

e for specific 

 lowest 
citly contain 

ting (so it 
 do a code 

nce? Of path 

S 
res 

by its 
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What level of code component granularity is most effective
techniques like regression testing?

We need to assess both module and path coverag
problems. This requires tools.

We can’t test every single “module” and path at the
level. We are driven to larger modules, which impli
more paths.

What is an appropriate module size for efficient tes
does not take two weeks of running before you can
check in?)

What is an appropriate measure of module importa
importance?

Factor in the probability that ASCI hardware and O
environments will likely cause regression test failu
themselves.

ALEGRA is currently covered on the order of 40% 
regression test suite.



Dynamic testing 301 - Links between test problems and 
.

2A 2B

2C 2D

4A 4B

4C 4D
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code modules are needed for component testing

Problem 1

Module 1

Module 2

Module 3

Module 4

Module 5

Module 1

Module 3 Module 4

Module 2
Link 1

Link 4 Link 2

Link 3

1A 1B

1C 1D

3A 3B

3C 3D



Dynamic Testing 401 - What is sensitivity analysis and 

1, O2, ..., ON)

Ij∂
∂Oi

Ij Ik∂

2

∂
∂ Oi
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why do I care?

(I1, I2, ..., IN) (OCODE

Question: what input parameters are 
most important for a given application?



Dynamic Testing 401 - Sensitivity analysis can be used to 
ation.

st suite, as 

ols can 

mportance.”

the output is not 

ble to us)
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determine the most important modules for verific

Sensitivity analysis can be used to refine the regression te
well as the more intensive verification problem suites.

Coupled with suitable coverage tools, sensitivity analysis to
suggest important paths as well as modules.

Sensitivity analysis can be used to develop measures of “i

How should sensitivity coefficients be calculated?

Deterministic methods  (brute force numerical differentiation of 
recommended)

“Symbolic methods”  - automatic differentiation (not yet applica

Probabilistic methods  (regression based, for example)



Dynamic Testing 501 - what about self-generated test 

 solve the 
 source

problems

e 
 those 
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problems?

Simple

Invert sources, say, to determine coefficients, then
resulting direct problem and confirm you match the

Heuristic

Synthesize test problems from a sampling of user 

Do this continuously?

Artificial intelligence?

Some more sophisticated approach to sensing cod
weaknesses and designing test problems to attack
weaknesses



Dynamic Testing xxx - Let’s not forget the hardware 

Flop range is 

ant amount 
neral system 

r-Paranoia-
ute 
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environment.

Think of two things:

The generic supercomputer in the 100 TFlop to 1 P
likely to be a heterogeneous system

We fail regression and benchmark testing a signific
of time due to “hardware” issues (OS, libraries, ge
issues, and general hardware instability)

Should every important calculation be preceded by a supe
for-supercomputers (Stevenson) that insures that the comp
environment on the machine is ready for that calculation?

“How expensive is it?”, Unknown supercomputer user...



Do we need validation “science”?

s from mere 
 events. 
ational 
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"...we never (least of all in science) draw inference
observational experience to the prediction of future
Rather, each such inference is based upon observ
experience...plus some universal theories..." 

Karl Popper, Objective Knowledge



What is “uncertainty quantification”  and why do I care?

ents)

ization 

eliability” and 
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The forward prediction  problem:

Characterize the “input” uncertainty (stochastic, fuzzy, etc)

Propagate this uncertainty through the code

Characterize the resulting output uncertainty

Refine this characterization via comparison with data

Develop “code reliability” metrics and statements (need requirem

(Most of this is not rocket science for an initial implementation.)

Now follow it with backward prediction :

Reduce the code uncertainty via the output uncertainty character
(Bayesian?).

(This IS rocket science.)

Now optimize :

Perform forward/backward prediction sweeps to increase “code r
guide new experiments.



Local validation begins with local uncertainty 

Simulation 
family

ults being 
istributions of 
se surface 
, to characterize 
l issue is 

rs can be 
 is hoped for.
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quantification, a high dimensional problem.

Application Error Space

Internal 
parameter space

Simulation

Local uncertainty quantification performs 
systematic studies of code uncertainty from 
stochastic treatments of parameter 
uncertainty. U is a random variable, P is a 
random vector.

Notice that how uncertainty is defined is an 
issue.

Alternatively, think of res
replaced by probability d
results. Then, do respon
methods, or other things
the result family. Genera
characterization

The number of paramete
enormous - parsimony

Ex: Component failure assessment with 
stochastic material variations.

U(P)

Uncertainty

Parameters



Trying to assess global code uncertainty with 
very 

inty has two 
ents: 

 - uncertainty 
cation and local data 
isons.

” - system scale 
inty quantification and 
ata comparisons.

 use spatial statistics 
s (like kriging) to 
erize U( A,P)?

at we have simplified 
lem by assuming that 

rnal parameter 
al dependence is 
t over application 

Is this true?
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stochastic inference leads to problems with 
high dimensions (“internal” + “applications” 
parameters.

Application Error Space

Internal 
parameter space

Uncerta
compon

“Local” 
quantifi
compar

“Global
uncerta
global d

Can we
method
charact

Note th
the prob
the inte
function
constan
space. 

Ex: NIF ignition capsule design confidence levels 
based on NOVA capsule design experience quantified.

U(A2,P)

U(A1,P) U(A4,P)

U(A3,P)

U(A5,P)

Sampling the error in 
application space.

Extrapolation

Interpolation



Note that “uncertainty” probably looks a lot more 
:
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complex than suggested by the previous figures

What we would 
hope for

Our worst 
nightmare



Application illustration - a hypevelocity impact example

Time

P
ar

tic
le

 V
el

oc
ity

MICRO

“Validation data”.
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BMD simulations provide an 
excellent application for studying 
predictive complexity.

There are at least six stochastic 
parameters to begin with: the hit 
point and the engagement velocity.

TMD Impact Simulation 
Using CTH

Surviving 
Canisters

Remains of 
interceptor

MACRO

MESO



An experiment relevant to hypervelocity impact 

Material #2

Material #3
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applications:

A simplified physical situation.

Material #1

D

d



The levels of phenomenology in this experiment:

Material 
strikes the 
secondary 
structure

Predict the 
damage to the 
secondary 
structure

6

8
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Projectile strikes 
the bumper 
layer. Projectile 

“disrupts”

Bumper 
disrupts

Bumper has 
a residual 
hole.

Material is 
ejected both 
front and 
back

The secondary 
structure is 
damaged by this 
debris.

TIME

1

2

3

5

4

7



Further levels of phenomenology in this experiment:

or 
- 

; 

 

r 

e 
/

n 

Time
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Wave propagation, 
attenuation, 
reflection from free 
surfaces

Projectile “disrupts”

Time- and spatially 
varying compressive 
stress field is 
generated; yielding

2

2-A

2-B

Release states form 
and interact; spall, 
fracture, 
fragmentation, 
melting, and boiling.

2-C

Correct EOS and constitutive behavi
in compression: Hugoniot states, two
and multi-wave structures, 
compressive strain- and strain-rate 
dependent strength effects, non-
planar impact geometry

Correct wave speeds, including 
curvature effects, non-planar waves
rise-time effects at reflections; 
hydrodynamic and dissipative wave
attenutation, time-dependent spall, 
nucleation and growth of void, shea
localization

Time-dependent spall, ejecta, phas
transitions driven by release, boiling
melting kinetic effects, thermal 
localization and trapping, non-
classical viscosity effects, nucleatio
and growth of fragmentation, 
statistical breakup effects



What the parameter space looks like for this hypervelocity 

ic 
(H)

els (M)

raphy)
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impact experiment:

“Experimental” parameters:

• Impact location (2)

• Velocity vector (3)

• D, d (2)

• Projectile geometry (1)

• Materials (none)

Total = 8

“Internal” parameters:

• Hydrodynam
parameters 

• Material Mod

Total = H + M

“Uncertainty” metrics:

• Time resolved data in witness material (PVF gauges)

• Time- and spatially-resolved debris cloud data (radiag

• Target recovery and inspection



What the parameter vs uncertainty space looks like for 

 propagation 
ning the “local” 
include

al design (sampling)

l equations

ents
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this specific example:

Difference With Experimental Data

Internal parameter space 
- dimension M+N

Experimental Parameters 
- dimension 8

Specific experiment

Use stochastic forward
techniques for determi
uncertainty. Examples 

- Statistical experiment

- Stochastic differentia

- Stochastic finite elem



Grid resolution in this approach:

asing grid 
ution

LE, 
ling 
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Grid 
Resolution #1

Grid 
Resolution #2

Incre
resol

Increasing grid resolution does not mean uniform refinement (A
adaptivity, geometry constraints). Algorithm parameters control
dynamic grid resolution are included in the internal parameters.



Projecting the uncertainty will look like:

Impact Speed
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Uncertainty

I E

Could be evidence for 
model breaking?



Some speculation and reasonable opportunities for 

ional spatial 

thing like 

h as the 

))
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research: Uncertainty as a spatial random field

I. Let the uncertainty be represented by a (M+H+8) dimens
stochastic process

For example, we end up worrying about properties of some
the variogram:

Then, we can develop predictors for U at other points, suc
BLUP (Best Linear Unbiased Predictor ):

var U ej i j,( ) U ek ik,( )–[ ] 2γ ej i j,( ) ek ik,(–(=

Û e0 i0,( ) λiU ej i j,( )

i 1=

n

∑=



You can get fancier. For example, does it make sense to seek 

ucture about 
ent error. It is 

ly on the 

 “Design and 
o. 4, 409-435; N. 
atical Geology, 

the experimental 
n make sense?

 to facilitate U e0 i,( )
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predictors of the form:

Here, µ is the mean of the random field, S contains fine str
the nature of the random field, and ε is called measurem
an additional but logical assumption that ε depends on
experimental parameters.

See J. Sacks, W. J. Welch, T. J. Mitchell and H. P. Wynn (1989),
Analysis of Computer Experiments,” Statistical Science, Vol. 4, N
Cressie (1988), “Spatial Prediction and Ordinary Kriging,” Mathem
Vol. 20, No. 4, 405-421.

Do we need another framework other than probability to do this?

What is the appropriate way to partition this random field among 
parameters and the internal parameters? Does this question eve

What structure do we require on the projected random field 

piecing together the various local uncertainties?

U e i,( ) µ e i,( ) S e i,( ) ε e( )+ +=



Speculation: Sensitivity Coefficients

rs is most 
nterest.

ternal 
ntal 
el invalidity?

 grid 

ted. Then we 

995), “Evaluating 
e important 
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II. Sensitivity studies define which of the H+M+8 paramete
important. Probabilistic evaluation of the sensitivities is of i

Is parsimony really true?

Does the sensitivity structure projected onto the in
parameter space remain invariant as the experime
parameters alone vary? If no, does this imply mod

Does the sensitivity structure remain invariant over
variations?

Don’t assume that the parameters are all uncorrela
need “interaction” coefficients.

The literature on sensitivity analysis is huge. See M. D. McKay (1
Prediction Uncertainty,” Los Alamos Report, LA-12915-MS for on
approach.



Speculation: on model calibration

n the model. 
rameters.

eters?

ving model 
n with 
amework for 
reprint.

 and uncertain 
f a recent review 
cientific Models: 

arameter 
th code 
8), “A Rigorous 
es,” Boeing 

 J. Park, and C. E. 
 to a Data Base,” 
eck (1987), 
,” Water 
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III. Some understanding of U should lead to improvement i
“Calibration” reduces U locally by optimizing the internal pa

How does the calibration vary with the experimental param

A Bayesian approach can be applied to the formal study of impro
uncertainty in the presence of parameters derived via compariso
experimental data. See, for example, K. M. Hanson (1998), “A Fr
Assessing Uncertainties in Simulation Predictions,” Los Alamos p

Statistically rigorous comparisons between uncertain calculations
data with the intent of providing code validation are the subject o
by R. G. Hills (1998), “Statistical Validation of Engineering and S
Background,” Sandia National Laboratories Contract Report.

This question also leads to the use of “surrogates” for studying p
calibration, as well as other optimization questions associated wi
uncertainty. Consider the important work A. J. Booker, et al (199
Framework for Optimization of Expensive Functions by Surrogat
Shared Services Group Report, SSGTECH-98-005.

Other papers that the reader might find of interest are D. D. Cox,
Singer (1996), “A Statistical Method for Tuning a Computer Code
Rice University Department of Statistics Report 96-3 and M. B. B
“Water Quality Modeling: A Review of the Analysis of Uncertainty
Resources Journal, Vol. 23, No. 8, 1393-1442.



Speculation: Those darn unknown unknowns

l uncertainty. 
ncertainty,” J. R. 

ce of models, a 
ight make this 

e introduction 
models:

this equation to:
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IV. Is there anyway to deal with “structural” uncertainty?

A Bayesian structure can be developed for considering structura
See D. Draper (1995), “Assessment and Propagation of Model U
Statist. Soc. B, Vol. 57, No. 1, 45-97.

This involves developing posteriors via conditioning over the spa
rather hopeless endeavor on the face of it. Additional structure m
more feasible.

Model uncertainty is often treated in multiphysics code through th
of tuning parameters. If a code (sub)model is built out of sub-sub

Uncertainty about the overall model is then treated by modifying 

Add ( α1, ..., αm) to the parameter list and proceed as before.

M Mj

j

∑=

M αjMj
j

∑=



Speculation: Additional issues

n the 
 and 

e as placing a 
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How do we treat “variability” in the assumed distributions o
parameters to do experimental design, sensitivity analysis,
forward propagation?

Is probability the canonical way to capture “uncertainty?”

Is saying “I don’t know what the value of a parameter is” the sam
probability distribution on it?



We need to design validation processes to attack the 

 that is to 
nd 

s - because 
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weak points of codes.

"...the theorist is interested in explanation as such,
say, in testable explanatory theories: applications a
predictions interest him only for theoretical reason
they can be used as tests of theories..."  

Karl Popper, The Logic of Scientific Discovery



Speculation: “Certification” leads to quantitative 

d

r unacceptable 
rmance.

 to quantify this way 
he nicest things 
ntitative certification 
nts for codes.

easured
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“reliability” analysis.

Probability of failing 
the certification 
requirement

Impact SpeeI E

Threshold fo
model perfo

The ability
is one of t
about qua
requireme

See D. G. Robinson (1998), “A Survey of Probabilistic Methods Used 
in Reliability, Risk, and Uncertainty Analysis: Analytical Techniques 
I,” Sandia National Labs Report SAND98-1189.

M

Do a darn 
experiment!!



DDACE (DOOMSDACE: Distributed Object- Oriented Software with 
puter 

1, ..., N runs on 1, ..., 
M processors (MPI)

brary 
 (Sturtevant, 
mann, Chen)
CalTech-11-98- December 7, 1998 
 -45 of 47-

Hard Codes for a Hard World

Multiple Samplings for the Design and Analysis of Com
Experiments)

DDACE

Mesh generation
DOE (sampling) and ALEGRA 
input
Processor assignments (MPI)

“ALEGRA”

Returns status
Returns output data

PDS/PIO I/O li
communication
Christon, Heer

Analysis (function 
approximation and 
response surfaces) - MARS; 
plotting (PGPLOT); etc

Inverse problem and 
optimization

Surrogate 
Objective 
Optimization 
Framework

Interface



DDACE Application - strong shock in an ideal gas
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In conclusion:
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"Summary: Computers Are Here To Stay. They En
Thought, Language, Science, and the Survival of M
Other Dangerous Tool, They Should Be Put Under
Controls."  

Clifford Truesdell, "The Computer: Ruin of Science
Man" in An Idiot’s Fugitive Essays on Science
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